nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 01, v.41 69-79+89
COVID-19疫情前后中国居民城际出行网络空间结构及其演变特征
基金项目(Foundation): 国家自然科学基金项目(42071216)
邮箱(Email): panjh_nwnu@nwnu.edu.cn;
DOI:
摘要:

综合、全面地分析COVID-19疫情前后中国居民城际出行网络的空间结构及其演变特征,对掌握重大安全事件影响、引导区域间交流合作、促进区域协调发展以及提升区域韧性等具有重要意义。该文采用2019—2023年每年3月逐日高德迁徙数据构建居民城际出行网络,从宏观、中观、微观尺度分析网络的时空格局、结构演变及组织模式,探讨疫情对中国居民城际出行网络结构的影响。结果表明:(1)宏观层面,COVID-19疫情影响下,中国居民城际出行规模下降趋势明显,但恢复速度较快。疫情结束后,周五出城、周日回城的周期性城际出行规律凸显。在COVID-19疫情暴发期及恢复期,居民城际出行网络在“震中”区域呈显著的“结构洞”空间分布格局,在与其紧密关联的“近邻”区域呈第二阶梯衰减特征。(2)中观层面,疫情暴发前后居民城际出行网络的空间组织结构相对稳定,仅局部区域变化明显。2019年居民城际出行网络的空间组织结构最松散,随后趋于紧凑。珠三角—中三角、川渝—黔滇2个城际出行网络空间集群片区在2021年后基本趋于稳定,而长三角—京津冀、西北片区变动频繁,尤其在COVID-19疫情暴发期。(3)微观层面,疫情冲击下,居民城际出行网络城市节点中心性的空间分布不均衡现象进一步加剧。2021年和2023年高优势度的城市数量呈逐渐增多之势,但主要位于“胡焕庸线—博台线”第一、二象限;第三、四象限城市节点的优势度在空间上虽具有相对均衡分布特征,但节点在网络中的地位竞争和更新并不明显。

Abstract:

A comprehensive analysis of the spatial structure and evolution characteristics of residents′ intercity travel networks in China before and after the COVID-19 pandemic is highly significant in understanding the impact of major security incidents, guiding interregional exchanges and cooperation, promoting coordinated regional development, and enhancing regional resilience.In this paper, the residents′ intercity travel networks were constructed using the daily AutoNavi migration data from March of each year from 2019 to 2023.On this basis, the spatiotemporal pattern, structural evolution, and organizational pattern of the networks were analyzed visually using complex network and spatial analysis methods at macro, meso, and micro scales, respectively.Subsequently, the impact of the COVID-19 pandemic on the intercity travel network structure of Chinese residents was examined.It is found as follows.(1) At the macroscopic level, the intercity travel scale of Chinese residents had witnessed a significant decline owing to the COVID-19 pandemic.However, its rate of recovery was encouraging.After the end of the pandemic, the periodic regularity of intercity travel departing on Fridays and returning on Sundays had become increasingly prominent.Furthermore, during the COVID-19 outbreak and recovery period, the residents′ intercity travel networks exhibited an evident spatial distribution pattern characterized by "structural holes" in the "epicenter" region and the secondstep decrease in the closely associated "near-neighbor" region.(2) At the mesolevel, the spatial organizational structure of the residents′ intercity travel networks in China remained relatively stable before and after the outbreak of COVID-19,with only local regions showing significant changes.In 2019,the spatial organization structure of the residents′ intercity travel networks was the loosest and gradually became more compact over time.The two spatial cluster zones of intercity travel networks in the Pearl River Delta-Central River Delta and Sichuan-Chongqing-Guizhou-Yunnan had essentially stabilized after 2021,whereas the Yangtze River Delta-Beijing-Tianjin-Hebei and Northwest zones had experienced frequent changes, particularly during the COVID-19 outbreak.(3) At the microscale, the spatial distribution imbalance of the centrality of urban nodes in the residents′ intercity travel networks had further intensified under the impact of the COVID-19.In 2021 and 2023,the urban nodes with high dominance were gradually increased, mainly concentrated in the first and second quadrants of the "Hu Line-Botai Line".Urban nodes in the third and fourth quadrants had a relatively balanced distribution in space.However, their competition and renewal in the networks were insignificant.

参考文献

[1] 勾艺超,魏铭,王姣娥,等.疫情背景下中国居民城际出行恢复力、恢复模式与影响因素[J].地球信息科学学报,2022,24(10):1941-1956.

[2] 薛芮,余吉安.疫情类公共卫生事件扩散与防控的空间重构作用:以流空间为视角[J].地域研究与开发,2021,40:1-5.

[3] DE HAAS H.Migration and development:a theoretical perspective[J].International Migration Review,2010,44(1):227-264.

[4] PAN J H,LAI J B.Spatial pattern of population mobility among cities in China:case study of the National Day plus Mid-Autumn Festival based on Tencent migration data[J].Cities,2019,94:55-69.

[5] LU Y H,ZHANG H L,ZHUANG M,et al.Understanding regional mobility resilience and its relationship with regional culture during the COVID-19 pandemic:a pathogen-stress theory perspective[J].Journal of Cleaner Production,2022,339:130621.

[6] 王姣娥,杜德林,魏冶,等.新冠肺炎疫情的空间扩散过程与模式研究[J].地理研究,2020,39(7):1450-1462.

[7] TAN S Y,LAI S J,FANG F,et al.Mobility in China,2020:a tale of four phases[J].National Science Review,2021,8(11).DOI:10.1093/nsr/nwab148nwab148.

[8] WANG Y Q,WANG Z H,WANG J Y,et al.Evolution and control of the COVID-19 pandemic:a global perspective[J].Cities,2022,130:103907.

[9] ZHANG X L,YANG Q,ALBARADEI S,et al.Rise and fall of the global conversation and shifting sentiments during the COVID-19 pandemic[J].Humanities and Social Sciences Communications,2021,8:120.

[10] EISENMANN C,NOBIS C,KOLAROVA V K,et al.Transport mode use during the COVID-19 lockdown period in Germany:the car became more important,public transport lost ground[J].Transport Policy,2021,103:60-67.

[11] LU L,PENG J L,WU J,et al.Perceived impact of the COVID-19 crisis on SMEs in different industry sectors:evidence from Sichuan,China[J].International Journal of Disaster Risk Reduction,2021,55:102085.

[12] KRAEMER M U G,YANG C H,GUTIERREZ B,et al.The effect of human mobility and control measures on the COVID-19 epidemic in China[J].Cold Spring Harbor Laboratory Press,2020,368(6490):493-497.

[13] 赵梓渝,韩钟辉,魏冶,等.中国人口流动管控应对COVID-19疫情效应评估[J].地理学报,2022,77(2):426-442.

[14] SO M K P,CHU A M Y,TIWARI A,et al.On topological properties of COVID-19:predicting and assessing pandemic risk with network statistics[J].Scientific Reports,2021,11:5112.

[15] 施泓羽,唐炉亮,郑枭于,等.新冠疫情影响下中国城市网络特征时空变化研究[J].地理与地理信息科学,2023,39(3):23-30.

[16] XU X K,LIU X F,WANG L,et al.Assessing the spread risk of COVID-19 associated with multi-mode transportation networks in China[J].Fundamental Research,2023,3(2):305-310.

[17] HAN Y.The impact of the COVID-19 pandemic on China′s economic structure:an input-output approach[J].Structural Change and Economic Dynamics,2022,63:181-195.

[18] 王章郡,周小曼,方忠权.基于新冠疫情冲击的城市旅游流网络结构韧性评估:以重庆市中心城区为例[J].干旱区资源与环境,2022,36(11):148-157.

[19] ZHANG W J,GONG Z Y,NIU C C,et al.Structural changes in intercity mobility networks of China during the COVID-19 outbreak:a weighted stochastic block modeling analysis[J].Computers,Environment and Urban Systems,2022,96:101846.

[20] 潘竟虎,魏石梅,张蓉,等.中国居民城际出行网络的空间结构特征[J].地理学报,2022,77(10):2494-2513.

[21] 李涛,崔磊波,王姣娥,等.基于时间序列预测的城际出行韧性评估方法与时空格局[J].热带地理,2024,44(5):838-849.

[22] 赖建波,朱军,郭煜坤,等.中原城市群人口流动空间格局与网络结构韧性分析[J].地理与地理信息科学,2023,39(2):55-63.

[23] BARBOSA H,BARTHELEMY M,GHOSHAL G,et al.Human mobility:models and applications[J].Physics Reports,2018,734:1-74.

[24] MONTERDE-I-BORT H,SUCHA M,RISSER R,et al.Mobility patterns and mode choice preferences during the COVID-19 situation[J].Sustainability,2022,14(2):768.

[25] 李自圆,孙昊,李林波.基于手机信令数据的长三角全域城际出行网络分析[J].清华大学学报(自然科学版),2022,62(7):1203-1211.

[26] 董瑶嘉,王甫园,王开泳.COVID-19影响下中国城市群国庆假期出行网络时空变化:基于2019年和2021年百度迁徙大数据[J].地理与地理信息科学,2023,39(6):65-74.

[27] 周榆欣,邬群勇.CLAB模型:一种乘客出租出行需求短时预测的深度学习模型[J].地球信息科学学报,2023,25(1):77-89.

[28] ZHANG W L,CHONG Z H,LI X J,et al.Spatial patterns and determinant factors of population flow networks in China:analysis on Tencent Location Big Data[J].Cities,2020,99:102640.

[29] 张伟丽,郝智娟,王伊斌,等.城市群人口流动空间网络及影响因素[J].地理科学,2023,43(1):72-81.

[30] 詹庆明,张伟杰,袁晓妍.COVID-19疫情前后长三角城市群人口流动结构变化研究[J].地理信息世界,2022,29(2):1-7.

[31] 高峰.高德地图发布春节出行大数据[J].计算机与网络,2016,42(Z1):18-19.

[32] WATTS D J,STROGATZ S H.Collective dynamics of ′small-world′ networks[J].Nature,1998,393:440-442.

[33] ZHENG Y H,MOU N X,ZHANG L X,et al.Chinese tourists in Nordic countries:an analysis of spatio-temporal behavior using geo-located travel blog data[J].Computers,Environment and Urban Systems,2021,85:101561.

[34] ROSVALL M,BERGSTROM C T.Maps of random walks on complex networks reveal community structure[J].Proceedings of the National Academy of Sciences,2008,105(4):1118-1123.

[35] KANG C G,JIANG Z J,LIU Y.Measuring hub locations in time-evolving spatial interaction networks based on explicit spatiotemporal coupling and group centrality[J].International Journal of Geographical Information Science,2021,36(2):360-381.

[36] 方创琳.博台线:中国区域发展均衡线的重要功能与建设构想[J].地理学报,2020,75(2):211-225.

[37] LEE S,KO E,JANG K,et al.Understanding individual-level travel behavior changes due to COVID-19:trip frequency,trip regularity,and trip distance[J].Cities,2023,135:104223.

[38] 赵梓渝,赵世瑶,韩钟辉,等.COVID-19疫情对中国节日人口城际出行影响研究[J].人文地理,2022,37(2):141-149.

基本信息:

DOI:

中图分类号:U491

引用信息:

[1]魏石梅,潘竟虎.COVID-19疫情前后中国居民城际出行网络空间结构及其演变特征[J].地理与地理信息科学,2025,41(01):69-79+89.

基金信息:

国家自然科学基金项目(42071216)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文