nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 01, v.41 24-32
基于Geomorphons方法的全国陆表切割密度空间格局研究
基金项目(Foundation): 国家自然科学基金项目“广西北部湾南流江泥沙逆转的驱动力及对河道冲淤影响”(42161005);国家自然科学基金项目“西南喀斯特小流域水文过程及水文系统演化:综合牛顿水文与达尔文水文方法”(42167038); 广西科学研究与技术开发计划重点研发项目“基于卫星遥感影像的河流水库水质污染预警应用技术研究”(AB22080046)
邮箱(Email):
DOI:
摘要:

陆表切割密度(Land Dissection Density, LDD)的空间格局与陆地表面土壤侵蚀息息相关,国内相关研究主要基于流域或局地尺度分析黄土高原和东北地区的陆表切割情况,全国尺度上陆表切割情况仍未知。该文基于ALOS World 3D-30 m DEM数据和全国二级流域数据,利用Geomorphons地形元素分类方法制成全国陆表切割密度分布图,并结合地貌区划分析各地貌区内不同等级切割密度的分布情况。结果显示:全国二级流域的陆表切割密度介于0~7 km/km2之间,强烈切割(3~<5 km/km2)流域面积约占国土面积的0.54%;切割密度与流域地形因素密切相关,缓斜坡(2°<~5°)、高丘陵和小起伏山地(100~400 m)以及低海拔(<1 000 m)地区是切割易发区;一级地貌大区间的切割密度空间格局差异显著,中度及以上切割(LDD≥2 km/km2)流域空间分布呈现出不同模式,体现了地貌区内外营力的共同作用;陆表切割易发生在受剥蚀外营力作用影响的二级地貌区,且不同等级切割密度在不同地貌类型上具有一定聚集性。研究结果可拓展现有陆表切割研究的空间尺度,为宏观层面的陆表切割现状和全国各地土壤侵蚀评估提供科学依据。

Abstract:

Land dissection density(LDD) is a key parameter for quantifying the degree of land surface dissection by erosional processes.Comprehensive understanding the spatial pattern of the LDD is vital in soil erosion and other related domains.At present, most studies on LDD in China are at the watershed or local scales.The spatial patterns of LDD at the national scale in China remain to be ascertained.In this paper, Geomorphons method based on the ALOS World 3D-30 m DEM data is applied to investigate the LDD spatial patterns of second-level drainage basins in China, covering 6 first-grade geomorphological regions and 36 second-grade geomorphological regions.It is found as follows.(1) Land dissections are mainly developed in the central and eastern parts of China.The land dissection density of second-level drainage basins is between 0 and 7 km/km2, and with strong land dissection density(3~<5 km/km2) area accounts for around 0.54% of the whole national land.(2) The intensity of land dissection development is closely related to topographic factors, among which gentle slope(2°<~5°) areas, hilly and undulating mountain areas(100~400 m),and low elevation(<1 000 m) areas are prone to land dissection development.(3) The LDD spatial pattern varies significantly in different geomorphological regions, which is a result of the combined action of internal and external forces.Different levels of land dissection density have certain aggregation for different geomorphological types.This study aims to extend the spatial scale of existing research on land dissection, thereby providing a scientific foundation for macro-level assessment of dissection development and nationwide soil erosion evaluation.

参考文献

[1] Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soil.Status of the world′s soil resources(SWSR)-main report[EB/OL].[2022-12-30].http://reliefweb.int/sites/reliefweb.int/files/resources/Soil_Report_Main_001.pdf.

[2] 中华人民共和国水利部.全国水土保持公报[EB/OL].[2024-04-04].https://www.yanshou100.com/gongbao/1649.

[3] BILLI P,DRAMI F.Geomorphological investigation on gully erosion in the Rift Valley and the northern highlands of Ethiopia[J].Catena,2003,50(2-4):353-368.

[4] 杨昕,汤国安,袁宝印,等.黄土高原勺状沟壑特征及发育过程[J].地理研究,2021,40(7):1870-1886.

[5] GUAN Y B,YANG S T,ZHAO C S,et al.Monitoring long-term gully erosion and topographic thresholds in the marginal zone of the Chinese Loess Plateau[J].Soil and Tillage Research,2021,205:104800.

[6] 廖义善,蔡强国,秦奋,等.基于DEM黄土丘陵沟壑区不同尺度流域地貌现状及侵蚀产沙趋势[J].山地学报,2008(3):347-355.

[7] LI C R,LI F Y,DAI Z Y,et al.Spatial variation of gully development in the Loess Plateau of China based on the morphological perspective[J].Earth Science Informatics,2020,13(4):1103-1117.

[8] ZHAO J L,VANMAERCKE M,CHEN L Q,et al.Vegetation cover and topography rather than human disturbance control gully density and sediment production on the Chinese Loess Plateau[J].Geomorphology,2016,274:92-105.

[9] ZHU J S,HOU C L.Analysis of difference for gully density and the relationship between terrain factors and gully density in the Losses Plateau based on Google Earth and GIS[J].Journal of Physics:Conference Series,2021,1881(3):032083.

[10] WANG H L,LUO J,QIN W,et al.Effect of spatial scale on gully distribution in Northeastern China[J].Modeling Earth Systems and Environment,2021,7:1611-1621.

[11] 许晓鸿,隋媛媛,张瑜,等.东北丘陵区沟蚀发展现状及影响因素分析[J].土壤学报,2014,51(4):699-708.

[12] ZHANG S M,HAN X,CRUSE R M,et al.Morphological characteristics and influencing factors of permanent gully and its contribution to regional soil loss based on a field investigation of 393 km2 in Mollisols region of Northeast China[J].Catena,2022,217:106467.

[13] ZHOU Y S,ZHANG B,QIN W,et al.Primary environmental factors controlling gully distribution at the local and regional scale:an example from Northeastern China[J].International Soil and Water Conservation Research,2020,9(1):58-68.

[14] 胡刚,伍永秋,刘宝元,等.东北漫岗黑土区切沟侵蚀发育特征[J].地理学报,2007(11):1165-1173.

[15] GILCHRIST A R,SUMMERFIELD M A,COCKBURN H A P.Landscape dissection,isostatic uplift,and the morphologic development of orogens[J].Geology,1994,22(11):963-966.

[16] LUO W,JASIEWICZ J,STEPINSKI T F,et al.Spatial association between dissection density and environmental factors over the entire conterminous United States[J].Geophysical Research Letters,2016,43(2):692-700.

[17] COELHO I M,COELHO V N,LUZ E J S,et al.A GPU deep learning metaheuristic based model for time series forecasting[J].Applied Energy,2017,201:412-418.

[18] HUANG X H,XIONG L Y,JIANG Y H,et al.Mapping gully affected areas by using Sentinel 2 imagery and digital elevation model based on the Google Earth Engine[J].Catena,2023,233:107473.

[19] 刘光,李树德,张亮.基于DEM的沟谷系统提取算法综述[J].地理与地理信息科学,2003,29(5):11-15.

[20] 朱红春,汤国安,吴良超,等.基于地貌结构与汇水特征的沟谷节点提取与分析:以陕北黄土高原为例[J].水科学进展,2012,23(1):7-13.

[21] 汤国安,李发源,熊礼阳.黄土高原数字地形分析研究进展[J].地理与地理信息科学,2017,33(4):1-7.

[22] 谢轶群,朱红春,汤国安,等.基于DEM的沟谷特征点提取与分析[J].地球信息科学学报,2013,15(1):61-67.

[23] JASIEWICZ J,STEPINSKI T F.Geomorphons-a pattern recognition approach to classification and mapping of landforms[J].Geomorphology,2013,182:147-156.

[24] 江岭,凌德泉,赵明伟,等.顾及多分析尺度的地形部位面向对象分类方法[J].地球信息科学学报,2018,20(3):281-290.

[25] 康鑫,王彦文,秦承志,等.多分析尺度下综合判别的地形元素分类方法[J].地理研究,2016,35(9):1637-1646.

[26] 李炳元,潘保田,程维明,等.中国地貌区划新论[J].地理学报,2013,68(3):291-306.

[27] 程维明,周成虎,李炳元,等.中国地貌区划理论与分区体系研究[J].地理学报,2019,74(5):839-856.

[28] 程维明,周成虎.多尺度数字地貌等级分类方法[J].地理科学进展,2014,33(1):23-33.

[29] 徐新良.基于DEM提取的中国流域、河网数据集[DB/OL].[2022-12-30].https://www.resdc.cn/DOI/DOI.aspx?DOIID=44.

[30] CAGLAR B,BECEK K,MEKIK C,et al.On the vertical accuracy of the ALOS world 3D-30m digital elevation model[J].Remote Sensing Letters,2018,9(6):607-615.

[31] 李旭,王志慧,李春意,等.基于不同开源DEM的地形校正模型应用对比研究[J].地理与地理信息科学,2023,39(5):22-29.

[32] 德梅克 J.详细地貌制图手册[M].北京:科学出版社,1984.

[33] 李炳元,潘保田,韩嘉福.中国陆地基本地貌类型及其划分指标探讨[J].第四纪研究,2008(4):535-543.

[34] LIAO W H.Region description using extended local ternary patterns[C]//20th International Conference on Pattern Recognition.2010:1003-1006.

[35] YOKOYAMA R,SHLRASAWA M,PIKE R J.Visualizing topography by openness:a new application of image processing to digital elevation models[J].Photogrammetric Engineering and Remote Sensing,2002,68:257-265.

[36] CUI X D,XING Z,YANG F L,et al.A method for multibeam seafloor terrain classification based on self-adaptive geographic classification unit[J].Applied Acoustics,2020,157:107029.

[37] KRAMM T,HOFFMEISTER D,CURDT C,et al.Accuracy assessment of landform classification approaches on different spatial scales for the Iranian Loess Plateau[J].ISPRS International Journal of Geo-Information,2017,6:366.

[38] LUO W,LIU C C.Innovative landslide susceptibility mapping supported by Geomorphon and geographical detector methods[J].Landslides,2017,15(3):465-474.

[39] SCHUMM S A,LICHTY R W.Time,space,and causality in geomorphology[J].American Journal of Science,1965,263(2):110-119.

基本信息:

DOI:

中图分类号:P931

引用信息:

[1]孙晓琳,赵银军,彭培好等.基于Geomorphons方法的全国陆表切割密度空间格局研究[J].地理与地理信息科学,2025,41(01):24-32.

基金信息:

国家自然科学基金项目“广西北部湾南流江泥沙逆转的驱动力及对河道冲淤影响”(42161005);国家自然科学基金项目“西南喀斯特小流域水文过程及水文系统演化:综合牛顿水文与达尔文水文方法”(42167038); 广西科学研究与技术开发计划重点研发项目“基于卫星遥感影像的河流水库水质污染预警应用技术研究”(AB22080046)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文